[Revision of ASME/ANSI B18.2.2-1987 (R2005)]

Nuts for General Applications: Machine Screw Nuts, Hex, Square, Hex Flange, and Coupling Nuts (Inch Series)

AN AMERICAN NATIONAL STANDARD

INTENTIONALLY LEFT BLANK

[Revision of ASME/ANSI B18.2.2-1987 (R2005)]

Nuts for General Applications: Machine Screw Nuts, Hex, Square, Hex Flange, and Coupling Nuts (Inch Series)

AN AMERICAN NATIONAL STANDARD

Three Park Avenue • New York, NY • 10016 USA

Date of Issuance: November 30, 2010

This Standard will be revised when the Society approves the issuance of a new edition. There will be no addenda issued to this edition.

ASME issues written replies to inquiries concerning interpretations of technical aspects of this Standard. Periodically certain actions of the ASME B18 Committee may be published as Cases. Cases and interpretations are published on the ASME Web site under the Committee Pages at http://cstools.asme.org as they are issued.

ASME is the registered trademark of The American Society of Mechanical Engineers.

This code or standard was developed under procedures accredited as meeting the criteria for American National Standards. The Standards Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment that provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large.

ASME does not "approve," "rate," or "endorse" any item, construction, proprietary device, or activity.

ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor assumes any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals.

> No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

> > The American Society of Mechanical Engineers Three Park Avenue, New York, NY 10016-5990

Copyright © 2010 by THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS All rights reserved Printed in U.S.A.

CONTENTS

Fore	word	iv
Com	mittee Roster	vi
Corr	espondence With the B18 Committee	vii
1	Introduction	1
2	References	1
3	General Data	1
Table	-	
1-1	Dimensions of Square and Hex Machine Screw Nuts	4
1-2	Dimensions of Small Pattern Hex Machine Screw Nuts	5
2	Dimensions of Square Nuts	6
3	Dimensions of Hex Flat Nuts and Hex Flat Jam Nuts	7
4	Dimensions of Hex Nuts and Hex Jam Nuts	8
5	Dimensions of Hex Slotted Nuts	9
6	Dimensions of Hex Thick Nuts	10
7	Dimensions of Hex Thick Slotted Nuts	11
8	Dimensions of Heavy Square Nuts	12
9	Dimensions of Heavy Hex Flat Nuts and Heavy Hex Flat Jam Nuts	13
10	Dimensions of Heavy Hex Nuts and Heavy Hex Jam Nuts	14
11	Dimensions of Heavy Hex Slotted Nuts	15
12	Dimensions of Hex Flange Nuts and Large Hex Flange Nuts	16
13	Dimensions of Hex Coupling Nuts	17
Man	datory Appendix	
I	Slot Gages and Gaging for Slotted Nuts	19
Noni	mandatory Appendices	
Α	Formulas for Nut Dimensions	21
В	Wrench Openings for Square and Hex Nuts	24

FOREWORD

American National Standards Committee B18 for the standardization of bolts, screws, nuts, rivets, and similar fasteners was organized in March 1922 as Sectional Committee B18 under the aegis of the American Engineering Standards Committee (later the American Standards Association, then the United States of America Standards Institute, Inc.) with the Society of Automotive Engineers and the American Society of Mechanical Engineers as joint sponsors. Subcommittee 2 was subsequently established and charged with the responsibility for technical content of standards covering wrench head bolts and nuts.

Subcommittee 2, after appraisal of the requirements of industry, developed a proposed standard series of bolt head and nut dimensions. This proposal was finally approved and designated a Tentative American Standard in February 1927.

A first revision of the document was designated as an American Standard in March 1933 and was followed by a second revision that was granted approval as an American Standard in January 1941.

Following reorganization of the B18 Committee in 1947, Subcommittee 2 was asked to expand the standard on head proportions into a complete product standard. A proposal covering square and hexagon head bolts and nuts, hexagon head cap screws, and automotive hexagon head bolts was prepared and submitted to the B18 Committee in April 1950. While this draft was under consideration, the B18 Committee received a proposal from the British Standards Institution for unification of dimensions on products incorporating unified screw threads. The Committee welcomed the opportunity of discussing the proposals and an American-British-Canadian Conference was held in New York on June 1 and 2, 1950.

It was agreed in the conference that the essentials of unification could be accomplished by selection of mutually satisfactory across-the-flats dimensions, since this would permit the use of the same wrenches and because other features would rarely affect interchangeability. After due consideration, suitable existing across-the-flats dimensions were selected for the hexagon products affected.

In its meeting of October 13, 1950, Subcommittee 2 agreed to incorporate into the proposed standard the conference recommendations on $\frac{1}{4}$ in. hexagon head bolts, $\frac{\pi}{6}$ in. hexagon head cap screws and automotive hexagon head bolts, and $\frac{7}{16}$ in. light and regular hexagon and square nuts. At a subsequent meeting of Subcommittee 2, further changes were adopted in order to combine the light and regular series of nuts, and to combine the automotive hexagon head bolt, hexagon head cap screw, and regular hexagon head close tolerance bolt.

In view of the progress made in the United States and the urgency of standardization for mutual defense, the British Standards Institution sponsored a second conference in London in April 1951 to complete the unification of certain hexagon bolts and nuts.

At a meeting on June 8, 1951, Subcommittee 2 reaffirmed its acceptance of the unified dimensions that correspond with those in the March 1951 draft, but attempted to select better nomenclature for the unified products. A final draft incorporating the nomenclature "Finished Hexagon Bolts and Nuts" and containing numerous editorial changes was submitted for letter ballot in September 1951. Following approval by the B18 Committee and the sponsors, the proposal was presented to the American Standards Association for approval and designation as an American Standard. This was granted on March 24, 1952.

It was recognized that the standard was in need of additional refinements, therefore Subcommittee 2 began work immediately to eliminate these shortcomings. A proposed revision removing inconsistencies with respect to fillets, improving the length tolerances on heavy hexagon bolts, and incorporating numerous other corrections and clarifications of an editorial nature resulted. The most noteworthy editorial change was a decision to combine the coverage for hexagon cap screws and square head set screws from the B18.2 standard with the coverage for slotted head cap screws and slotted headless set screws from the B18.6 standard for publication in a separate document. The requirements for the unified hexagon cap screws and finished

hexagon bolts being identical in the overlapping sizes, the data would now be available in two publications. Following approvals by the B18 Committee and sponsor organizations, the proposal was submitted to the American Standards Association and declared an American Standard on February 2, 1955.

A revision of this Standard comprised of numerous editorial corrections and inclusion of an appendix for grade markings was duly approved and designated an American Standard on April 18, 1960.

At a meeting in February 1960, Subcommittee 2 approved a recommendation to reduce the head heights for heavy, heavy semifinished, and heavy finished hexagon bolt, which was subsequently approved by letter ballot of the B18 Committee on August 16, 1960. A proposed standard for heavy hexagon structural bolts submitted and accepted by Subcommittee 2 at its October 17, 1960 meeting was approved by letter ballot of the B18 Committee on May 9, 1961. To meet the urgent needs of the steel construction industry, it was considered necessary to publish the standard for the structural bolts immediately. Consequently, Appendix IV to ASA B18.2-1960 containing coverage for the revised heavy hexagon bolts and the new heavy hexagon structural bolts was released in 1962.

In October 1961, Subcommittee 2 appointed a subgroup to review all product standards for square and hexagon bolts, screws, and nuts, and to recommend simplifications that would be compatible with technical, production, and distribution advances that had occurred over the prior several years. The subgroup presented its recommendations at a meeting of Subcommittee 2 in October 1962. It was agreed that the internally and externally threaded products should be published in separate documents as suggested, and draft proposals for each were completed.

The proposed revision for square and hex nuts incorporated the following subgroup recommendations: discontinuation of regular semifinished nuts; elimination of regular hexagon and heavy hexagon nuts in sizes $\frac{1}{4}$ in. through 1 in.; elimination of finished hexagon nuts in sizes larger than $\frac{1}{2}$ in.; elimination of the washer face semifinished style on finished series nuts in sizes $\frac{1}{8}$ in. and smaller and heavy series nuts in sizes $\frac{1}{16}$ in. and smaller; removal of machine screw nuts (these nuts are now contained in B18.6.3); and adoption of an abbreviated product nomenclature. Letter ballot of this proposal to the B18 Committee resulted in approval. Following acceptance by the sponsor organizations the revision was submitted to the American Standards Association and designated ASA B18.2.2 on September 8, 1965.

Subcommittee 2 continued to further develop refinements initiated by the simplification subgroup and to study changes suggested by consumer interests. This work culminated in Subcommittee acceptance of a 1970 proposal incorporating, in addition to numerous editorial changes, revisions to the requirements on angularity of bearing face and countersink diameters for the various hex nuts and heavy hex nuts, and inclusion of an appendix covering the gaging of slots in slotted nuts.

The proposed revision, after approval by letter ballot of the B18 Committee in March 1970, was subsequently approved by the sponsors and submitted to the American National Standards Institute for designation as an American National Standard. This was granted on January 18, 1972.

A proposed revision of this Standard agreed upon by Subcommittee 2 incorporated a provision to enable consumers to specify heavy hex nuts and heavy hex jam nuts with close bearing face angularity, when required; clarified intent with regard to width across flats on nuts produced from bar stock; deleted coverage for hex castle nuts from the appendices; and included numerous editorial refinements. This proposal was formally approved by letter ballot of the subcommittee and the B18 Committee. Following its acceptance by the sponsor organizations the revision was referred to the American National Standards Institute and granted approval as an American National Standard on February 27, 1987.

In March 2009 the B18.2 Subcommittee undertook a revision of this Standard. The format has been updated to meet the requirements of ASME B18.12.1. Regular pattern machine screw nuts have been moved from ASME B18.6.3, and the small pattern machine screw nuts have been added to this Standard. The hex flange nut that was previously referred to as IFI-145 has been added. Coupling nuts have been added. Many of the sizes came from the IFI-128 and others were based on what has been used for many years by industry. This proposal was formally approved by letter ballot of the subcommittee and the B18 Committee. Following its acceptance by the sponsor organizations, the revision was referred to the American National Standards Institute and granted approval as an American National Standard on August 24, 2010.

ASME B18 COMMITTEE Standardization of Bolts, Nuts, Rivets, Screws, Washers, and Similar Fasteners

(The following is the roster of the Committee at the time of approval of this Standard.)

STANDARDS COMMITTEE OFFICERS

J. Greenslade, Chair D. S. George, Vice Chair R. D. Strong, Vice Chair C. J. Gomez, Secretary

STANDARDS COMMITTEE PERSONNEL

V. Cartina, Autocraft Industrial

D. A. Clever, Consultant

P. Cockman. Ford Motor Co.

C. A. Dugal de la Garza, TSP, Inc.

D. S. George, ND Industries

C. J. Gomez, The American Society of Mechanical Engineers

J. Greenslade, Industrial Fasteners Institute

J. J. Grey, Contributing Member, Fastener Consulting Services, Inc.

B. Hasluk, Contributing Member, Defense Supply Center Philadelphia

A. Herskovitz, Consultant

1. Hubbard. Leland-Powell Fasteners. Inc.

J. Jennings, Contributing Member, Naval Surface Warfare Center

W. H. King, Porteous Fastener Co.

J. F. Koehl, Contributing Member, Spirol International Corp.

W. H. Kopke, Consultant

W. J. Lutkus, Emhart Technologies

D. McCrindle, Canadian Fasteners Institute

M. D. Prasad, Contributing Member, Global M&F Solutions, Inc.

S. Savoji, ITW Medalist

W. Schevey, Contributing Member, BGM Fastener Co., Inc.

Q. M. Smith III, Oregon Department of Transportation

W. R. Stevens, Ramco Specialties, Inc.

R. D. Strong, Consultant

S. W. Vass, Consultant

C. B. Wackrow, MNP Corp.

W. K. Wilcox, Consultant C. B. Williamson, Fastenal Co.

C. J. Wilson, Consultant

R. B. Wright, Contributing Member, Wright Tool Co.

J. G. Zeratsky, National Rivet and Manufacturing Co.

SUBCOMMITTEE 16 - NUTS

W. R. Stevens, Chair, Ramco Specialties, Inc.

V. Cartina, Vice Chair, Consultant

A. P. Cockman, Ford Motor Co.

B. A. Dusina, Federal Screw Works

M. A. Elmi, Caterpillar

D. S. George, ND Industries

J. Greenslade, Industrial Fasteners Institute

J. J. Grey, Fastener Consulting Services, Inc.

J. Jennings, Naval Surface Warfare Center

J. F. McCarrick, Defense Supply Center Philadelphia

W. L. Sakowski, Account Managers LLC

R. M. Serabin, Freundlich Supply Co.

D. F. Sharp, GMS Structural Engineers

D. J. Soscia, Electric Boat Corp.

W. K. Wilcox, Consultant

C. B. Williamson, Fastenal Co.

C. J. Wilson, Consultant

CORRESPONDENCE WITH THE B18 COMMITTEE

General. ASME Standards are developed and maintained with the intent to represent the consensus of concerned interests. As such, users of this Standard may interact with the Committee by requesting interpretations, proposing revisions, and attending Committee meetings. Correspondence should be addressed to:

Secretary, B18 Standards Committee The American Society of Mechanical Engineers Three Park Avenue New York, NY 10016-5990 http://go.asme.org/Inquiry

Proposing Revisions. Revisions are made periodically to the Standard to incorporate changes that appear necessary or desirable, as demonstrated by the experience gained from the application of the Standard. Approved revisions will be published periodically.

The Committee welcomes proposals for revisions to this Standard. Such proposals should be as specific as possible, citing the paragraph number(s), the proposed wording, and a detailed description of the reasons for the proposal, including any pertinent documentation.

Proposing a Case. Cases may be issued for the purpose of providing alternative rules when justified, to permit early implementation of an approved revision when the need is urgent, or to provide rules not covered by existing provisions. Cases are effective immediately upon ASME approval and shall be posted on the ASME Committee Web page.

Requests for Cases shall provide a Statement of Need and Background Information. The request should identify the standard, the paragraph, figure or table number(s), and be written as a Question and Reply in the same format as existing Cases. Requests for Cases should also indicate the applicable edition(s) of the standard to which the proposed Case applies.

Interpretations. Upon request, the B18 Standards Committee will render an interpretation of any requirement of the Standard. Interpretations can only be rendered in response to a written request sent to the Secretary of the B18 Standards Committee.

The request for an interpretation should be clear and unambiguous. It is further recommended that the inquirer submit his/her request in the following format:

Subject: Cite the applicable paragraph number(s) and the topic of the inquiry.

Edition: Cite the applicable edition of the Standard for which the interpretation is

being requested.

Question: Phrase the question as a request for an interpretation of a specific requirement suitable for general understanding and use, not as a request for an approval

suitable for general understanding and use, not as a request for an approval of a proprietary design or situation. The inquirer may also include any plans or drawings that are necessary to explain the question; however, they should

not contain proprietary names or information.

Requests that are not in this format may be rewritten in the appropriate format by the Committee prior to being answered, which may inadvertently change the intent of the original request.

ASME procedures provide for reconsideration of any interpretation when or if additional information that might affect an interpretation is available. Further, persons aggrieved by an interpretation may appeal to the cognizant ASME Committee or Subcommittee. ASME does not "approve," "certify," "rate," or "endorse" any item, construction, proprietary device, or activity.

Attending Committee Meetings. The B18 Standards Committee regularly holds meetings that are open to the public. Persons wishing to attend any meeting should contact the Secretary of the B18 Standards Committee.

INTENTIONALLY LEFT BLANK

Nuts for General Applications: Machine Screw Nuts, Hex, Square, Hex Flange, and Coupling Nuts (Inch Series)

1 INTRODUCTION

1.1 Scope

1.1.1 This Standard is intended to cover the complete general and dimensional data for the various types of inch series square and hex nuts, including machine screw nuts and coupling nuts, recognized as American National Standard. Also included are appendices covering gaging of slots in slotted nuts, wrench openings for nuts, and formulas on which dimensional data are based. It should be understood, however, that where questions arise concerning acceptance of product, the dimensions in the tables shall govern over recalculation by formula.

1.1.2 The inclusion of dimensional data in this Standard is not intended to imply that all of the products described herein are stock production sizes. Consumers are requested to consult with manufacturers concerning lists of stock production sizes.

1.2 Comparison to ISO Standards

There are no comparable ISO inch fastener standards.

1.3 Dimensions

Unless otherwise indicated, units of measurement are expressed in inches.

1.4 Options

Where options are allowed, they shall be selected at the manufacturer's discretion unless otherwise specified by the purchaser.

1.5 Terminology References

For definitions of terminology not specifically defined in this Standard, refer to ASME B18.12.

2 REFERENCES

Unless otherwise specified, the standards referenced shall be the latest edition at the time of order placement.

ASME B1.1, Unified Inch Screw Threads (UN and UNR Thread Form)

ASME B1.3, Screw Thread Gaging Systems for Acceptability: Inch and Metric Screw Threads (UN, UNR, UNJ, M, and MJ)

ASME B18.12, Glossary of Terms for Mechanical Fasteners

ASME B18.18.2, Inspection and Quality Assurance for High-Volume Machine Assembly Fasteners

ASME B18.24, Part Identifying Number (PIN) Code System for B18 Fastener Products

ASME B107 Series, Standards for Hand Tools

Publisher: The American Society of Mechanical Engineers (ASME) Three Park Avenue, New York, NY 10016-5990; Order Department: 22 Law Drive, P.O. Box 2900, Fairfield, NJ 07007-2900 (www.asme.org)

ASTM A 563, Standard Specification for Carbon and Alloy Steel Nuts

ASTM F 467, Standard Specification for Nonferrous Nuts for General Use

ASTM F 594, Standard Specification for Stainless Steel

ASTM F 812/F 812M, Standard Specification for Surface Discontinuities of Nuts, Inch and Metric Series

ASTM F 1941, Specification for Electrodeposited Coatings on Threaded Fasteners [Unified Inch Screw Threads (UN/UNR)]

Publisher: American Society for Testing and Materials (ASTM International), 100 Barr Harbor Drive, West Conshohocken, PA 19428 (www.astm.org)

SAE J995, Mechanical and Material Requirements for Steel Nuts

Publisher: SAE International, 400 Commonwealth Drive, Warrendale, PA 15096 (www.sae.org)

3 GENERAL DATA

3.1 Width Across Flats

The width across flats of nut shall be the distance measured, perpendicular to the axis of nut, overall between two opposite sides of the nut in accordance with the notes on respective dimensional tables.

Maximum width across flats shall not be exceeded, except as stated below. No transverse section through the nut between 25% and 75% of the actual nut thickness as measured from the bearing surface shall be less than the minimum width across flats.

NOTE: Nonferrous milled-from-bar hex nuts: The minimum across flats dimensions of nonferrous milled-from-bar hex nuts shall not be less than the values tabulated in Tables 1-1 through

13. The maximum across flats size may be greater than the tabulated values in Tables 1-1 through 13, but shall not be equal to or greater than the minimum wrench opening shown in Table B-1, Nonmandatory Appendix B.

3.2 Corner Fill

A rounding or lack of fill at junction of hex corners with chamfer shall be permissible, provided the width across corners is within specified limits at and beyond a distance equal to 17.5% of the basic thread diameter from the chamfered face.

3.3 Tops of Nuts and Chamfers

Tops of nuts shall be flat and chamfered. Unless otherwise specified by the purchaser or in this Standard, nuts in sizes $\frac{5}{8}$ in. nominal size and smaller shall be double-chamfered. Larger size nuts shall be double-chamfered or have washer-faced bearing surface and chamfered top.

3.3.1 Single-Chamfered Nuts. Diameter of the chamfer circle shall be equal to the maximum width across flats within a tolerance of -15%. The length of chamfer at hex corners shall be from 5% to 15% of the basic thread diameter. The surface of the chamfer may be slightly convex or rounded.

3.3.2 Double-Chamfered Nuts and Washer-Faced Nuts. The diameter of chamfer circle on double-chamfered nuts and washer-faced nuts shall be within the limits of the maximum width across flats and 95% of the minimum width-across-flats.

3.4 Countersink

Unless otherwise specified in this Standard, tapped holes shall be countersunk on the bearing faces. The maximum countersink diameter shall be the thread basic (nominal) major diameter plus 0.030 in. for $\frac{3}{6}$ in. nominal size nuts and smaller, and 1.08 times the basic major diameter for nuts larger than $\frac{3}{6}$ in. No part of the threaded portion shall project beyond the bearing surface.

3.5 Nut Thickness

The nut thickness shall be the overall distance, measured parallel to the axis of nut, from the top of the nut to the bearing surface and shall include the thickness of the washer face where provided.

3.6 Washer Face Diameter

Unless otherwise specified, the diameter of washer face shall be within the limits of the maximum width across flats and 95% of the minimum width across flats.

3.7 Slots

When specified in the respective dimensional table, slots shall be normal to nut flats. Contour of bottom of

slots shall be at manufacturer's option. Requirements for gaging slots are specified in Mandatory Appendix I.

3.8 True Position of Tapped Hole

3.8.1 Hex Nuts. The axis of tapped hole in hex nuts shall be located at true position with respect to the axis of nut body within a tolerance zone having a diameter equivalent to 4% of the maximum width across flats for $1\frac{1}{2}$ in. nominal size nuts or smaller and 6% of the maximum width across flats for nuts larger than $1\frac{1}{2}$ in., regardless of feature size.

3.8.2 Square Nuts. The axis of tapped hole in square nuts shall be located at true position with respect to the axis of nut body within a tolerance zone having a diameter equivalent to 10% of the maximum width across flats, regardless of feature size.

3.9 Bearing Surface Perpendicularity

Bearing surface shall be flat and perpendicular to the axis of the threaded hole within the specified full indicator measurement (FIM) limit indicated in the tables.

3.10 Threads

3.10.1 Thread Class. Threads shall be Unified Standard, Class 2B, of the series specified in the notes on respective dimensional tables, in accordance with ASME B1.1. Class 3B may be specified by the purchaser if designated at the time of inquiry and order.

3.10.2 Thread Gaging. Unless otherwise specified by the purchaser, gaging for screw thread dimensional acceptability shall be in accordance with Gaging System 21 as specified in ASME B1.3, Screw Thread Gaging Systems for Dimensional Acceptability.

3.11 Material

Unless otherwise specified by the purchaser or elsewhere in this Standard, chemical and mechanical properties of steel nuts shall conform to Grade A of ASTM A 563, Carbon and Alloy Steel Nuts or Grade 2 (square nuts only) of SAE J995. Nuts of other materials such as corrosion resistant (stainless) steel, brass, bronze, and aluminum alloys shall have properties as agreed upon between the manufacturer and purchaser. Refer to ASTM F 594 for information on corrosion resistant alloy steel requirements and ASTM F 467 for information on nonferrous materials.

3.12 Finish

Unless otherwise specified, nuts shall be supplied with a natural (as-processed) finish, unplated or uncoated. If electroplated finishes are required, reference ASTM F 1941. Other finishes may be specified as indicated in the applicable mechanical and performance standards.

3.13 Designation

3.13.1 Nuts shall be designated by the following data in the sequence shown: product name; dimensional standard, nominal size (fraction or decimal); threads per inch; mechanical and performance standard, and grade protective finish (including specification and thickness), if required.

EXAMPLES:

- (1) Square Nut, ASME B18.2.2, ½-13, ASTM A 563 Grade A, Zinc Plated per ASTM F 1941 Fe/Zn 3A
- (2) Hex Nut, ASME B18.2.2, 3/4-16, SAE J995 Grade 5, Steel
- (3) Hex Thick Slotted Nut, ASME B18.2.2, 1.000-8, ASTM F 594 (Alloy Group 1) Corrosion Resistant Steel
- **3.13.2** For part identification numbers (PIN), refer to ASME B18.24. For machine screw nut PINS, use the

AEN24 and AEN25 family types under ASME B18.6.3 until ASME B18.24 is revised to list the types covered in this Standard.

3.14 Grade and Manufacturer's Identification Marking

Grade and manufacturer's markings shall be applied as required by the applicable mechanical and performance standard except that markings are not required for the machine screw nuts per Tables 1-1 and 1-2.

3.15 Inspection and Quality Assurance

Unless otherwise specified, product quality shall be determined according to ASME B18.18.2.

Chamfered

H

G

No chamfer allowed

No chamfer optional

Table 1-1 Dimensions of Square and Hex Machine Screw Nuts

Machine Screw Nuts [Note (1)]

					٧	Vidth Acro	ss Corner	'S			Dearing Curfoss
Nominal	Basic Major Diameter	Width	Across Fl	ats, F	Squa	re, G	Hex	, G ₁	Thick	ness	Bearing Surface Runout to Thread Axis,
Size	of Thread	Basic	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	FIM
0	0.060	5/32	0.150	0.156	0.206	0.221	0.171	0.180	0.043	0.050	0.005
1	0.073	5/32	0.150	0.156	0.206	0.221	0.171	0.180	0.043	0.050	0.005
2	0.086	3/16	0.180	0.188	0.247	0.265	0.205	0.217	0.057	0.066	0.006
3	0.099	3/16	0.180	0.188	0.247	0.265	0.205	0.217	0.057	0.066	0.006
4	0.112	1/4	0.241	0.250	0.331	0.354	0.275	0.289	0.087	0.098	0.009
5	0.125	5/16	0.302	0.312	0.415	0.442	0.344	0.361	0.102	0.114	0.011
6	0.138	5/16	0.302	0.312	0.415	0.442	0.344	0.361	0.102	0.114	0.011
8	0.164	11/32	0.332	0.344	0.456	0.486	0.378	0.397	0.117	0.130	0.012
10	0.190	3/8	0.362	0.375	0.497	0.53	0.413	0.433	0.117	0.130	0.013
12	0.216	7/16	0.423	0.438	0.581	0.619	0.482	0.505	0.148	0.161	0.015
1/4	0.250	7/16	0.423	0.438	0.581	0.619	0.482	0.505	0.178	0.193	0.015
5/16	0.312	9/16	0.545	0.562	0.748	0.795	0.621	0.65	0.208	0.225	0.020
5/16 3/8	0.375	5/8	0.607	0.625	0.833	0.884	0.692	0.722	0.239	0.257	0.021

GENERAL NOTES:

- (a) For additional requirements refer to section 3, General Data.
- (b) Material. Unless otherwise specified, machine screw nuts shall be made of carbon steel.
- (c) Mechanical Property Requirements. Unless the purchaser specifies otherwise in the inquiry and purchase documents, machine screw nuts have no mechanical requirements.

NOTE:

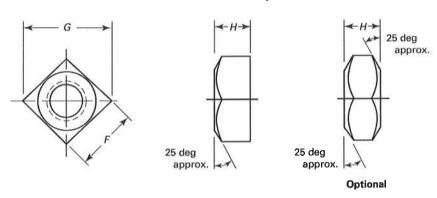
(1) As shown in the figure, no countersink is required.

Chamfered 30 deg Bottom chamfer optional

Table 1-2 Dimensions of Small Pattern Hex Machine Screw Nuts

B. I		14	i
IN	OLE		ı

	Basic Major	Wie	lth Across Fla	ts F	Cor	Across ners	Thick	(ness	Bearing Surface Runout to
Nominal Size	Diameter of Thread	Basic	Min.	Max.	Min.	Max.	Min.	Max.	Thread Axls, FIM
0	0.060	1/8	0.121	0.125	0.134	0.140	0.043	0.050	0.005
1	0.073	1/8	0.121	0.125	0.134	0.140	0.043	0.050	0.005
2	0.086	5/32	0.150	0.156	0.171	0.180	0.057	0.066	0.006
3	0.099	5/32	0.150	0.156	0.171	0.180	0.057	0.066	0.006
4	0.112	3/16	0.180	0.188	0.205	0.217	0.087	0.098	0.009
5	0.125	1/4	0.241	0.25	0.275	0.289	0.102	0.114	0.011
6	0.138	5/16	0.302	0.312	0.344	0.361	0.102	0.114	0.011
8	0.164	11/32	0.332	0.344	0.378	0.397	0.117	0.13	0.012
10	0.19	3/8	0.362	0.375	0.413	0.433	0.117	0.13	0.013


GENERAL NOTES:

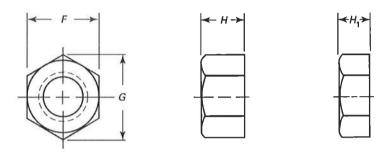
- (a) For additional requirements refer to section 3, General Data.(b) Material. Unless otherwise specified, machine screw nuts shall be made of carbon steel.
- (c) Mechanical Property Requirements. Unless the purchaser specifies otherwise in the inquiry and purchase documents, machine screw nuts have no mechanical requirements.

NOTE:

(1) As shown in the figure, no countersink is required.

Table 2 Dimensions of Square Nuts

Note (1)

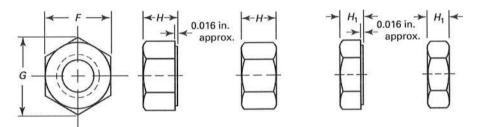

Nominal	Basic Major Diameter of	Width	n Across Fla [Note (2)]	ts, F		Across ers, <i>G</i>		Thickness		Bearing Surface Runout to Thread Axis.
Size	Thread	Basic	Min.	Max.	Min.	Max.	Basic	Min.	Max.	FIM
1/4	0.2500	7/16	0.425	0.438	0.554	0.619	7/32	0.203	0.235	0.011
5/16	0.3125	9/16	0.547	0.562	0.721	0.795	17/64	0.249	0.283	0.015
3/8	0.3750	5/8	0.606	0.625	0.802	0.884	21/64	0.310	0.346	0.016
7/16	0.4375	3/4	0.728	0.750	0.970	1.061	3/8	0.356	0.394	0.019
1/2 5/8	0.5000	13/16	0.788	0.812	1.052	1.149	7/16	0.418	0.458	0.022
5/8	0.6250	1	0.969	1.000	1.300	1.414	35/64	0.525	0.569	0.026
3/4 7/8	0.7500	11/8	1.088	1.125	1.464	1.591	21/32	0.632	0.680	0.029
7/8	0.8750	$1\frac{5}{16}$	1.269	1.312	1.712	1.856	49/64	0.740	0.792	0.034
1	1.0000	$1\frac{1}{2}$	1.450	1.500	1.961	2.121	7/8	0.847	0.903	0.039
$1\frac{1}{8}$	1.1250	$1^{11}/_{16}$	1.631	1.688	2.209	2.386	1	0.970	1.030	0.029
11/4	1.2500	17/8	1.812	1.875	2.458	2.652	$1^{3}/_{32}$	1.062	1.126	0.032
$1\frac{3}{8}$	1.3750	$2^{1}/_{16}$	1.994	2.062	2.708	2.917	113/64	1.169	1.237	0.035
$1\frac{1}{2}$	1.5000	$2^{1}/_{4}$	2.175	2.250	2.956	3.182	$1\frac{5}{16}$	1.276	1.348	0.039

GENERAL NOTE: For additional requirements, refer to section 3, General Data. NOTES:

⁽¹⁾ See para. 3.1.

⁽²⁾ As shown in the figure, no countersink is required.

Table 3 Dimensions of Hex Flat Nuts and Hex Flat Jam Nuts

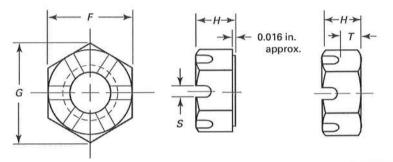

Note (1)

Nominal	Basic Major Diameter of		Across Fl Note (2)]	ats, F	Corne	Across ers, <i>G</i> e (3)]		ness Hex Nuts, <i>H</i>	Flat		ness He m Nuts,		Bearing Surface Runout to Thread
Size	Thread	Basic	Mln.	Max.	Min.	Max.	Basic	Min.	Max.	Basic	Min.	Max.	Axis, FIM
11/8	1.1250	111/16	1.631	1.688	1.859	1.949	1	0.970	1.030	5/8	0.595	0.655	0.029
11/4	1.2500	$1\frac{7}{8}$	1.812	1.875	2.066	2.165	$1\frac{3}{32}$	1.062	1.126	3/4	0.718	0.782	0.032
13/8	1.3750	$2^{1}/_{16}$	1.994	2.062	2.273	2.382	$1^{13}/_{64}$	1.169	1.237	13/16	0.778	0.846	0.035
$1^{1}/_{2}$	1.5000	21/4	2.175	2.250	2.480	2.598	15/16	1.276	1.348	7/8	0.839	0.911	0.039

GENERAL NOTE: For additional requirements, refer to section 3, General Data.

- (1) As shown in the figure, no countersink is required.
- (2) See para. 3.1.
- (3) See para. 3.2.

Table 4 Dimensions of Hex Nuts and Hex Jam Nuts

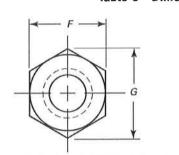


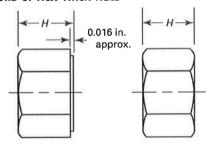
Maximum Runout of Bearing Surface to Thread Axis, FIM

										Hex	Nuts	
											ed Proof ad	Hex Jam Nuts
Nominal	Basic Major Diameter of		Across s, F		Across ers, G		ess Hex s, H	Thickne Nuts	ess Jam s, H ₁	Up to 150,000	150,000 psi and	All Strength
Size	Thread	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	psi	Greater	Levels
1/4	0.2500	0.428	0.438	0.488	0.505	0.212	0.226	0.150	0.163	0.015	0.010	0.015
5/16	0.3125	0.489	0.500	0.557	0.577	0.258	0.273	0.180	0.195	0.016	0.011	0.016
5/16 3/8	0.3750	0.551	0.563	0.628	0.650	0.320	0.337	0.210	0.227	0.017	0.012	0.017
7/ ₁₆ 1/ ₂	0.4375	0.675	0.688	0.768	0.794	0.365	0.385	0.240	0.260	0.018	0.013	0.018
1/2	0.5000	0.736	0.750	0.840	0.866	0.427	0.448	0.302	0.323	0.019	0.014	0.019
9/16	0.5625	0.861	0.875	0.982	1.010	0.473	0.496	0.301	0.324	0.020	0.015	0.020
5/8	0.6250	0.922	0.938	1.051	1.083	0.535	0.559	0.363	0.387	0.021	0.016	0.021
3/4	0.7500	1.088	1,125	1.240	1.299	0.617	0.665	0.398	0.446	0.023	0.018	0.023
3/4 7/8	0.8750	1.269	1.312	1.447	1.516	0.724	0.776	0.458	0.510	0.025	0.020	0.025
1	1.0000	1.450	1.500	1.653	1.732	0.831	0.887	0.519	0.575	0.027	0.022	0.027
11/8	1.1250	1.631	1.688	1.859	1.949	0.939	0.999	0.579	0.639	0.030	0.025	0.030
11/4	1.2500	1.812	1.875	2.066	2.165	1.030	1.094	0.687	0.751	0.033	0.028	0.033
13/8	1.3750	1.994	2.062	2.273	2.382	1.138	1.206	0.747	0.815	0.036	0.031	0.036
11/2	1.5000	2.175	2.250	2.480	2.598	1.245	1.317	0.808	0.880	0.039	0.034	0.039
15/8	1.6250	2.35	2.43	2.679	2.805	1.364	1.416	0.868	0.944	0.044	0.038	0.044
13/4	1.7500	2.538	2.625	2.893	3.031	1.460	1.540	0.929	1.009	0.048	0.041	0.048
17/8	1.8750	2.722	2.813	3.103	3.247	1.567	1.651	0.989	1.073	0.051	0.044	0.051
2	2.0000	2.900	3.000	3.306	3.464	1.675	1.763	1.050	1.138	0.055	0.047	0.055
$2^{1}/_{4}$	2.2500	3.263	3.375	3.719	3.897	1.890	1.986	1.155	1.267	0.061	0.052	0.061
$2^{1}/_{2}$	2.5000	3.625	3.750	4.133	4.330	2.105	2.209	1.401	1.427	0.068	0.058	0.068
23/4	2.7500	3.988	4.125	4.546	4.763	2.319	2.431	1.522	1.556	0.074	0.064	0.074
3	3.0000	4.350	4.500	4.959	5.196	2.534	2.654	1.643	1.685	0.081	0.070	0.081
31/4	3.2500	4.713	4.875	5.373	5.629	2.749	2.877	1.748	1.814	0.087	0.075	0.087
$3^{1}/_{2}$	3.5000	5.075	5.250	5.786	6.062	2.964	3.100	1.870	1.943	0.094	0.081	0.094
33/4	3.7500	5.438	5.625	6.199	6.495	3.178	3.322	1.990	2.072	0.100	0.087	0.100
4	4.0000	5.800	6.000	6.612	6.928	3.393	3.545	2.112	2.201	0.107	0.093	0.107

GENERAL NOTE: For additional requirements, refer to section 3, General Data.

Table 5 Dimensions of Hex Slotted Nuts


Nominal	Basic Major Diameter of		Across F Note (1)		Corne	Across ers, <i>G</i> e (2)]	Th	ickness,	н	Thickr	otted ness, <i>T</i> e (3)]		f Slot, <i>S</i> e (3)]	Maximum Runout of Bearing Surface to Thread Axis,
Size	Thread	Basic	Min.	Max.	Min.	Max.	Basic	Min.	Max.	Min.	Max.	Min.	Max.	FIM [Note (4)]
1/4	0.2500	7/16	0.428	0.438	0.488	0.505	7/32	0.212	0.226	0.12	0.14	0.07	0.10	0.015
5/16	0.3125	1/2	0.489	0.500	0.557	0.577	17/64	0.258	0.273	0.16	0.18	0.09	0.12	0.016
3/8	0.3750	9/16	0.551	0.562	0.628	0.650	21/64	0.320	0.337	0.19	0.21	0.12	0.15	0.018
7/16	0.4375	11/16	0.675	0.688	0.768	0.794	3/8	0.365	0.385	0.21	0.23	0.12	0.15	0.018
1/2	0.5000	3/4	0.736	0.750	0.840	0.866	7/16	0.427	0.448	0.27	0.29	0.15	0.18	0.019
9/16	0.5625	7/8	0.861	0.875	0.982	1.010	31/64	0.473	0.496	0.29	0.31	0.15	0.18	0.020
5/8	0.6250	15/16	0.922	0.938	1.051	1.083	35/64	0.535	0.559	0.32	0.34	0.18	0.24	0.021
3/4	0.7500	$1^{1}/_{8}$	1.088	1.125	1.240	1.299	41/64	0.617	0.665	0.38	0.40	0.18	0.24	0.023
3/ ₄ 7/ ₈	0.8750	15/16	1.269	1.312	1.447	1.516	3/4	0.724	0.776	0.49	0.52	0.18	0.24	0.025
1	1.0000	$1\frac{1}{2}$	1.450	1.500	1.653	1.732	55/64	0.831	0.887	0.56	0.59	0.24	0.30	0.027
$1\frac{1}{8}$	1.1250	$1^{11}/_{16}$	1.631	1.688	1.859	1.949	31/32	0.939	0.999	0.61	0.64	0.24	0.33	0.030
11/4	1.2500	17/8	1.812	1.875	2.066	2.165	$1\frac{1}{16}$	1.030	1.094	0.67	0.70	0.31	0.40	0.033
13/8	1.3750	$2^{1}/_{16}$	1.994	2.062	2.273	2.382	$1^{11}/_{64}$	1.138	1.206	0.78	0.82	0.31	0.40	0.036
$1\frac{1}{2}$	1.5000	21/4	2.175	2.250	2.480	2.598	1 1/32	1.245	1.317	0.82	0.86	0.37	0.46	0.039


GENERAL NOTE: For additional requirements, refer to section 3, General Data.

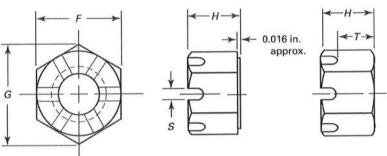
NOTES: (1) See para. 3.1. (2) See para. 3.2. (3) See para. 3.7.

⁽⁴⁾ See paras. 3.3 and 3.9.

Table 6 Dimensions of Hex Thick Nuts

Maximum Runout of Bearing Surface to Thread Axis, FIM

					Width	Across				[Note	e (3)]
	Basic Major	Width	Across F	•	Corne	ers, G	_		ü	Specified	Proof Load
Nominal	Diameter of		[Note (1)]		[Not	e (2)]	I	hickness,	Н	Up to	150,000 psi
Size	Thread	Basic	Min.	Max.	Min.	Max.	Basic	Min.	Max.	150,000 psi	and Greater
1/4	0.2500	7/16	0.428	0.438	0.488	0.505	9/32	0.274	0.288	0.015	0.010
5/16	0.3125	1/2	0.489	0.500	0.557	0.577	21/64	0.320	0.336	0.016	0.011
3/8	0.3750	9/16	0.551	0.562	0.628	0.650	13/32	0.398	0.415	0.017	0.012
7/16	0.4375	11/16	0.675	0.688	0.768	0.794	29/64	0.444	0.463	0.018	0.013
1/2	0.5000	3/4	0.736	0.750	0.840	0.866	9/16	0.552	0.573	0.019	0.014
9/16 5/8 3/4	0.5625	7/8	0.861	0.875	0.892	1.010	39/64	0.598	0.621	0.020	0.015
5/R	0.6250	15/16	0.922	0.938	1.051	1.083	23/32	0.706	0.731	0.021	0.016
3/4	0.7500	11/8	1.088	1.125	1.240	1.299	13/16	0.798	0.827	0.023	0.018
7/8	0.8750	15/16	1.269	1.312	1.447	1.516	29/32	0.890	0.922	0.025	0.020
1	1.0000	11/2	1.450	1.500	1.653	1.732	1	0.982	1.018	0.027	0.022
11/8	1,1250	111/16	1.631	1.688	1.859	1.949	15/32	1.136	1.176	0.030	0.025
11/4	1.2500	17/8	1.812	1.875	2.066	2.165	11/4	1.228	1.272	0.033	0.028
13/8	1.3750	$2^{1}/_{16}$	1.994	2.062	2.273	2.382	13/8	1.351	1.399	0.036	0.031
11/2	1.5000	21/4	2.175	2.250	2.480	2.598	11/2	1.474	1.526	0.039	0.034

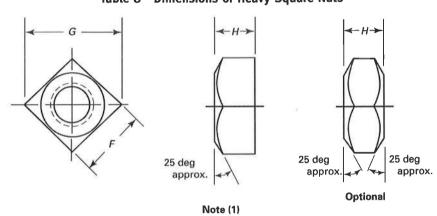

 ${\tt GENERAL\ NOTE:} \quad {\tt For\ additional\ requirements,\ refer\ to\ section\ 3,\ General\ Data}.$

NOTES:

⁽¹⁾ See para. 3.1.

⁽²⁾ See para. 3.2.(3) See paras. 3.3 and 3.9.

Table 7 Dimensions of Hex Thick Slotted Nuts

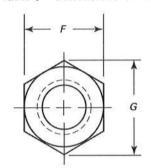

Nominal	Basic Major Diameter of		Across F Note (1)		Width Corne [Note	ers, G	Th	ickness,	н	Thick	otted ness, <i>T</i> e (3)]		f Slot, <i>S</i> e (3)]	Maximum Runout of Bearing Surface to Thread Axis,
Size	Thread	Basic	Min.	Max.	Min.	Max.	Basic	Min.	Max.	Min.	Max.	Min.	Max.	FIM [Note (4)]
1/4	0.2500	7/16	0.428	0.438	0.488	0.505	9/32	0.274	0.288	0.18	0.20	0.07	0.10	0.015
5/16	0.3125	1/2	0.489	0.500	0.557	0.577	21/64	0.320	0.336	0.22	0.24	0.09	0.12	0.016
3/8	0.3750	9/16	0.551	0.562	0.628	0.650	13/32	0.398	0.415	0.27	0.29	0.12	0.15	0.017
7/16	0.4375	11/16	0.675	0.688	0.768	0.794	29/64	0.444	0.463	0.29	0.31	0.12	0.15	0.018
1/2	0.5000	3/4	0.736	0.750	0.840	0.866	9/16	0.552	0.573	0.40	0.42	0.15	0.18	0.019
9/16	0.5625	7/8	0.861	0.875	0.982	1.010	39/64	0.598	0.621	0.41	0.43	0.15	0.18	0.020
9/16 5/8 3/4	0.6250	15/16	0.922	0.938	1.051	1.083	23/32	0.706	0.731	0.49	0.51	0.18	0.24	0.021
3/4	0.7500	$1\frac{1}{8}$	1.088	1.125	1.240	1.299	¹³ / ₁₆	0.798	0.827	0.55	0.57	0.18	0.24	0.023
7/8	0.8750	15/16	1.269	1.312	1.447	1.516	29/32	0.890	0.922	0.64	0.67	0.18	0.24	0.025
1	1.0000	11/2	1.450	1.500	1.653	1.732	1	0.982	1.018	0.70	0.73	0.24	0.30	0.027
11/8	1.1250	111/16	1.631	1.688	1.859	1.949	$1\frac{5}{32}$	1.136	1.176	0.80	0.83	0.24	0.33	0.030
11/4	1.2500	17/8	1.812	1.875	2.066	2.165	11/4	1,228	1.272	0.86	0.89	0.31	0.40	0.033
13/8	1.3750	$2^{1}/_{16}$	1.994	2,062	2.273	2.382	$1^{3}/_{8}$	1.351	1.399	0.98	1.02	0.31	0.40	0.036
11/2	1.5000	21/4	2.175	2.250	2.480	2.598	$1^{1}/_{2}$	1.474	1.526	1.04	1.08	0.37	0.46	0.039

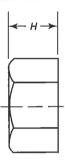
GENERAL NOTE: For additional requirements, refer to section 3, General Data.

NOTES:

⁽¹⁾ See para. 3.1. (2) See para. 3.2. (3) See para. 3.7. (4) See paras. 3.3 and 3.9.

Table 8 Dimensions of Heavy Square Nuts


Nominal	Basic Major Diameter of	Widt	h Across Flat [Note (2)]	ts, <i>F</i>		Across ers, G		Thickness, <i>I</i>	н	Bearing Surface Runout to Thread
Size	Thread	Basic	Min.	Max.	Min.	Max.	Basic	Min.	Max.	Axis, FIM
1/4	0.2500	1/2	0.488	0.500	0.640	0.707	1/4	0.218	0.266	0.026
5/16 3/8	0.3125	9/16	0.546	0.562	0.720	0.795	5/16	0.280	0.330	0.030
3/8	0.3750	11/16	0.669	0.688	0.889	0.973	3/8	0.341	0.393	0.036
7/16	0.4375	3/4	0.728	0.750	0.970	1.060	7/16	0.403	0.456	0.039
1/2	0.5000	7/8	0.850	0.875	1.137	1.237	1/2	0.464	0.520	0.046
5/A	0.6250	$1\frac{1}{16}$	1.031	1.062	1.386	1.503	5/8	0.587	0.647	0.056
3/4	0.7500	11/4	1.212	1.250	1.635	1.768	3/4	0.710	0.774	0.065
7/8	0.8750	17/16	1.394	1.438	1.884	2.033	7/B	0.833	0.901	0.075
1	1.0000	15/8	1.575	1.625	2.132	2.298	1	0.956	1.028	0.082
$1\frac{1}{8}$	1.1250	113/16	1.756	1.812	2.381	2.563	11/8	1.079	1.155	0.063
11/4	1.2500	2	1.938	2.000	2.631	2.828	11/4	1.187	1.282	0.070
13/8	1.3750	$2^{3}/_{16}$	2.119	2.188	2.879	3.094	13/8	1.310	1.409	0.076
11/2	1.5000	23/8	2.300	2.375	3.128	3.359	11/2	1.433	1.536	0.082


GENERAL NOTE: For additional requirements, refer to section 3, General Data. NOTES:

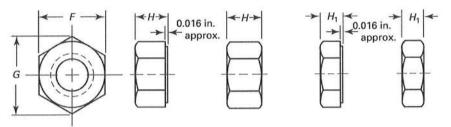
⁽¹⁾ As shown in the figure, no countersink is required.

⁽²⁾ See para. 3.1.

Table 9 Dimensions of Heavy Hex Flat Nuts and Heavy Hex Flat Jam Nuts

Note (1)

Nominal	Basic Major Diameter of		Across F [Note (2)]		Corne	Across ers, <i>G</i> e (3)]		iess Heav	•		ness Heav Jam Nuts	•	Bearing Surface Runout to Thread Axis,
Size	Thread	Basic	Min.	Max.	Min.	Max.	Basic	Min.	Max.	Basic	Min.	Max.	FIM
11/8	1,1250	113/16	1.756	1.812	2.002	2.093	11/8	1.079	1.155	5/8	0.579	0.655	0.032
11/4	1.2500	2	1.938	2.000	2.209	2.309	11/4	1.187	1.282	3/4	0.687	0.782	0.034
13/8	1.3750	$2^{3}/_{16}$	2.119	2.188	2.416	2.526	13/8	1.310	1.409	13/16	0.747	0.846	0.038
11/2	1.5000	$2^{3}/_{8}$	2.300	2.375	2.622	2.742	$1^{1}/_{2}$	1.433	1.536	7/8	0.808	0.911	0.041
13/4	1.7500	23/4	2.662	2.750	3.035	3.175	13/4	1.679	1.790	1	0.929	1.040	0.048
2	2.0000	31/8	3.025	3.125	3.449	3.608	2	1.925	2.044	$1\frac{1}{8}$	1.050	1.169	0.054
21/4	2.2500	$3\frac{1}{2}$	3.388	3.500	3.862	4.041	21/4	2.155	2.298	11/4	1.155	1.298	0.061
$2^{1}/_{2}$	2.5000	$3^{7}/_{8}$	3.750	3.875	4.275	4.474	$2^{1}/_{2}$	2.401	2.552	$1\frac{1}{2}$	1.401	1.552	0.067
$2^{3}/_{4}$	2.7500	41/4	4.112	4.250	4.688	4.907	$2^{3}/_{4}$	2.647	2.806	1 1 1/8	1.522	1.681	0.074
3	3.0000	45/8	4.475	4.625	5.102	5.340	3	2.893	3.060	$1^{3}/_{4}$	1.643	1.810	0.080
31/4	3.2500	5	4.838	5.000	5.515	5.774	31/4	3.124	3.314	1 1/8	1.748	1.939	0.087
$3\frac{1}{2}$	3.5000	5 ³ / ₈	5.200	5.375	5.928	6.207	$3^{1}/_{2}$	3.370	3.568	2	1.870	2.068	0.093
33/4	3.7500	53/4	5.562	5.750	6.341	6.640	33/4	3.616	3.822	$2^{1}/_{8}$	1.990	2.197	0.100
4	4.0000	$6^{1}/_{8}$	5.925	6.125	6.755	7.073	4	3.862	4.076	21/4	2.112	2.326	1.06


GENERAL NOTE: For additional requirements, refer to section 3, General Data. NOTES:

⁽¹⁾ As shown in the figure, no countersink is required.

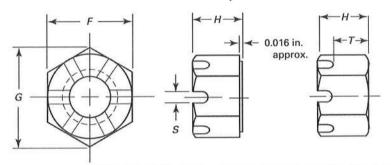
⁽²⁾ See para. 3.1.

⁽³⁾ See para. 3.2.

Table 10 Dimensions of Heavy Hex Nuts and Heavy Hex Jam Nuts

Maximum Runout of Bearing Surface to Thread Axis, FIM [Note (3)]

													Heavy H	ex Nuts	Heavy
					Width	Across							Specifie Lo	d Proof ad	Hex Jam Nuts
Nominal	Basic Major Diameter		Width Across Flats, F [Note (1)]		Corners, G [Note (2)]		Thickness Heavy Hex Nuts, H		Thickness Heavy Hex Jam Nuts, H_1			Up to 150,000	150,000 psi and	All Strength	
Size	of Thread	Basic	Min.	Max.	Min.	Max.	Basic	Min.	Max.	Basic	Min.	Max.	psi	Greater	Levels
1/4	0.2500	1/2	0.488	0.500	0.556	0.577	15/64	0.218	0.250	11/64	0.156	0.188	0.017	0.011	0.017
5/16	0.3125	9/16	0.546	0.562	0.622	0.650	19/64	0.280	0.314	13/64	0.186	0.220	0.020	0.012	0.020
3/8	0.3750	11/16	0.669	0.688	0.763	0.794	²³ /64	0.341	0.377	15/64	0.216	0.252	0.021	0.014	0.021
7/16	0.4375	3/4	0.728	0.750	0.830	0.866	²⁷ /64	0.403	0.441	17/64	0.247	0.285	0.022	0.015	0.022
1/2	0.5000	7/8	0.850	0.875	0.969	1.010	31/64	0.464	0.504	19/64	0.277	0.317	0.023	0.016	0.023
9/16	0.5625	15/ ₁₆	0.909	0.938	1.037	1.083	35/64	0.526	0.568	21/64	0.307	0.349	0.024	0.017	0.024
5/8	0.6250	$1\frac{1}{16}$	1.031	1.062	1.175	1.227	39/64	0.587	0.631	23/64	0.337	0.381	0.025	0.018	0.025
3/4	0.7500	11/4	1.212	1.250	1.382	1.443	47/64	0.710	0.758	27/64	0.398	0.446	0.027	0.020	0.027
3/4 7/8	0.8750	$1^{7}/_{16}$	1.394	1.438	1.589	1.660	55/64	0.833	0.885	31/64	0.458	0.510	0.029	0.022	0.029
1	1.0000	1 1/8	1.575	1.625	1.796	1.876	63/64	0.956	1.012	35/64	0.519	0.575	0.031	0.024	0.031
11/8	1.1250	$1^{13}/_{16}$	1.756	1.812	2.002	2.093	17/64	1.079	1.139	39/64	0.579	0.639	0.033	0.027	0.033
$1^{1}/_{4}$	1.2500	2	1.938	2.000	2.209	2.309	$1\frac{7}{32}$	1.187	1.251	23/32	0.687	0.751	0.035	0.030	0.035
$1\frac{3}{8}$	1.3750	$2^{3}/_{16}$	2.119	2.188	2.416	2.526	$1^{11}/_{32}$	1.310	1.378	25/32	0.747	0.815	0.038	0.033	0.038
$1\frac{1}{2}$	1.5000	$2^{3}/_{8}$	2.300	2.375	2.622	2.742	$1^{15}/_{32}$	1.433	1.505	27/32	0.808	0.880	0.041	0.036	0.041
1 1 1/8	1.6250	$2\frac{9}{16}$	2.481	2.562	2.828	2.959	119/32	1.556	1.632	29/32	0.868	0.944	0.044	0.038	0.044
13/4	1.7500	$2^{3}/_{4}$	2.662	2.750		3.175	$1^{23}/_{32}$	1.679	1.759	31/32	0.929	1.009	0.048	0.041	0.048
1 1/8	1.8750	$2^{15}/_{16}$	2.844	2.938	3.242	3.392	$1^{27}/_{32}$	1.802	1.886	$1\frac{1}{32}$	0.989	1.073	0.051	0.044	0.051
2	2.0000	$3^{1}/_{8}$	3.025	3.125	3.449	3.608	$1^{31}/_{32}$	1.925	2.013	$1^{3}/_{32}$	1.050	1.138	0.055	0.047	0.055
$2^{1}/_{4}$	2.2500	$3\frac{1}{2}$	3.388	3.500	3.862	4.041	213/64	2.155	2.251	$1^{13}/_{64}$	1.155	1.251	0.061	0.052	0.061
$2^{1}/_{2}$	2.5000	$3^{7}/_{8}$	3.750	3.875	4.275	4.474	229/64	2.401	2.505	$1^{29}/_{64}$	1.401	1.505	0.068	0.058	0.068
$2^{3}/_{4}$	2.7500	41/4	4.112	4.250		4.907	245/64	2.647	2.759	$1^{37}/_{64}$	1.522	1.634	0.074	0.064	0.074
3	3.0000	45/8	4.475	4.625	5.102		$2^{61}/_{64}$	2.893	3.013	145/64	1.643	1.763	0.081	0.070	0.081
31/4	3.2500	5	4.838	5.000		5.774	$3\frac{3}{16}$	3.124	3.252	$1^{13}/_{16}$	1.748	1.876	0.087	0.075	0.087
$3\frac{1}{2}$	3.5000	53/8	5.200	5.375	5.928	6.207	$3^{7}/_{16}$	3.370	3.506	$1^{15}/_{16}$	1.870	2.006	0.094	0.081	0.094
$3^{3}/_{4}$	3.7500	53/4	5.562	5.750	6.341	6.640	$3^{11}/_{16}$	3.616	3.760	$2\frac{1}{16}$	1.990	2.134	0.100	0.087	0.100
4	4.0000	$6\frac{1}{8}$	5.925	6.125	6.755	7.073	$3^{15}/_{16}$	3.862	4.014	$2^{3}/_{16}$	2.112	2.264	0.107	0.093	0.107


GENERAL NOTES:

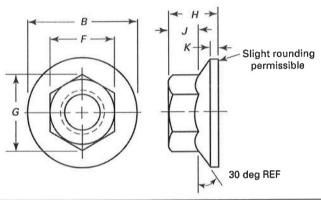
- (a) For additional requirements refer to section 3, General Data.
- (b) Chamfers and Washer Faces. Nuts in sizes $\frac{7}{16}$ in. nominal size and smaller shall be double-chamfered. Larger size nuts shall be double-chamfered or have washer-faced bearing surface and chamfered top.
- (c) Optional Bearing Surface Runout. Where purchaser specifies close runout of bearing face style heavy hex or heavy hex jam nuts in nominal sizes 2 in. to 4 in., nuts shall be so processed as to have a maximum bearing face runout of 0.010 in. FIM.

NOTES:

- (1) See para. 3.1.
- (2) See para. 3.2.
- (3) See paras. 3.3 and 3.9.

Table 11 Dimensions of Heavy Hex Slotted Nuts

Nominal	Basic Major Diameter of		Across F [Note (1)]		Corn	Across ers, <i>G</i> e (2)]	TI	nickness,	н	Thickr	otted ness, <i>T</i> e (3)]	Slo	th of t, <i>S</i> e (3)]	Maximum Runout of Bearing Surface to Thread Axis, FIM
Size	Thread	Basic	Min.	Max.	Min.	Max.	Basic	Min.	Max.	Min.	Max.	Min.	Max.	[Note (4)]
1/4	0.2500	1/2	0.488	0.500	0.556	0.577	15/64	0.218	0.250	0.13	0.15	0.07	0.10	0.017
5/16	0.3125	9/16	0.546	0.562	0.622	0.650	19/64	0.280	0.314	0.19	0.21	0.09	0.12	0.020
5/16 3/8	0.3750	11/16	0.669	0.688	0.763	0.794	23/64	0.341	0.377	0.22	0.24	0.12	0.15	0.021
7/16	0.4375	3/4	0.728	0.750	0.830	0.866	27/64	0.403	0.441	0.26	0.28	0.12	0.15	0.022
7/16 1/2	0.5000	7/8	0.850	0.875	0.969	1.010	31/64	0.464	0.504	0.32	0.34	0.15	0.18	0.023
9/16	0.5625	15/16	0.909	0.938	1.037	1.083	35/64	0.526	0.568	0.35	0.37	0.15	0.18	0.024
5/8	0.6250	$1\frac{1}{16}$	1.031	1.062	1.175	1.227	39/64	0.587	0.631	0.38	0.40	0.18	0.24	0.025
3/4	0.7500	11/4	1.212	1.250	1.382	1.443	47/64	0.710	0.758	0.47	0.49	0.18	0.24	0.027
9/16 5/8 3/4 7/8	0.8750	17/16	1.394	1.438	1.589	1.660	55/64	0.833	0.885	0.59	0.62	0.18	0.24	0.029
1	1.0000	15/8	1.575	1.625	1.796	1.876	63/64	0.956	1.012	0.69	0.72	0.24	0.30	0.031
11/8	1.1250	$1^{13}/_{16}$	1.756	1.812	2.002	2.093	$1^{7}/_{64}$	1.079	1.139	0.75	0.78	0.24	0.33	0.033
11/4	1.2500	2	1.938	2.000	2.209	2.309	$1^{7}/_{32}$	1.187	1.251	0.83	0.86	0.31	0.40	0.035
13/8	1.3750	$2^{3}/_{16}$	2.119	2.188	2.416	2.526	$1^{11}/_{32}$	1.310	1.378	0.95	0.99	0.31	0.40	0.038
$1\frac{1}{2}$	1.5000	$2^{3}/_{8}$	2.300	2.375	2.622	2.742	$1^{15}/_{32}$	1.433	1.505	1.01	1.05	0.37	0.46	0.041
13/4	1.7500	$2^{3}/_{4}$	2.662	2.750	3.035	3.175	$1^{23}/_{32}$	1.679	1.759	1.20	1.24	0.43	0.52	0.048
2	2.0000	$3^{1}/_{8}$	3.025	3.125	3.449	3.608	$1^{31}/_{32}$	1.925	2.013	1.38	1.43	0.43	0.52	0.055
21/4	2.2500	$3\frac{1}{2}$	3.388	3.500	3.862	4.041	213/64	2.155	2.251	1.62	1.67	0.43	0.52	0.061
$2^{1}/_{2}$	2.5000	$3^{7}/_{8}$	3.750	3.875	4.275	4.474	$2^{29}/_{64}$	2.401	2.505	1.74	1.79	0.55	0.64	0.068
23/4	2.7500	41/4	4.112	4.250	4.688	4.907	245/64	2.647	2.759	1.99	2.05	0.55	0.64	0.074
3	3.0000	45/8	4.475	4.625	5.102	5.340	$2^{61}/_{64}$	2.893	3.013	2.17	2.23	0.62	0.71	0.081
31/4	3.2500	5	4.838	5.000	5.515	5.774	$3\frac{3}{16}$	3.124	3.252	2.41	2.47	0.62	0.71	0.087
$3\frac{1}{2}$	3.5000	$5\frac{3}{8}$	5.200	5.375	5.928	6.207	$3^{7}/_{16}$	3.370	3.506	2.65	2.72	0.62	0.71	0.094
33/4	3.7500	53/4	5.562	5.750	6.341	6.640	$3^{11}/_{16}$	3.616	3.760	2.90	2.97	0.62	0.71	0.100
4	4.0000	$6^{1}/_{8}$	5.925	6.125	6.755	7.073	$3^{15}/_{16}$	3.862	4.014	3.15	3.22	0.62	0.71	0.107

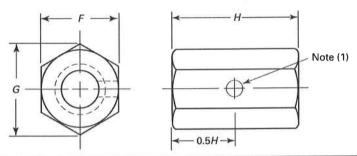

GENERAL NOTES:

NOTES:

- (1) See para. 3.1.(2) See para. 3.2.
- (3) See para. 3.7.(4) See paras. 3.3 and 3.9.

 ⁽a) For additional requirements, refer to section 3, General Data.
 (b) Chamfers and Washer Faces. Nuts in sizes ⁷/₁₆ in. nominal size and smaller shall be double-chamfered. Larger size nuts shall be double-chamfered or have washer-faced bearing surface and chamfered top.

Table 12 Dimensions of Hex Flange Nuts and Large Hex Flange Nuts


Nominal	Basic Major Diameter of		Across		Across ers, G		neter ge, <i>B</i>		ckness,	Minimum Wrenching	Minimum Flange Thickness,	Maximum Runout of Bearing Surface to Thread
Size	Thread	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Length, J	K	Axis, FIM
					Н	ex Flange	Nuts					
No. 6	0.1380	0.302	0.312	0.342	0.361	0.406	0.422	0.156	0.171	0.10	0.02	0.014
8	0.1640	0.334	0.344	0.381	0.397	0.452	0.469	0.187	0.203	0.13	0.02	0.016
10	0.1900	0.365	0.375	0.416	0.433	0.480	0.500	0.203	0.219	0.13	0.03	0.017
12	0.2160	0.428	0.438	0.488	0.505	0.574	0.594	0.222	0.236	0.14	0.04	0.020
1/4	0.2500	0.428	0.438	0.488	0.505	0.574	0.594	0.222	0.236	0.14	0.04	0.020
5/16	0.3125	0.489	0.500	0.557	0.577	0.660	0.680	0.268	0.283	0.17	0.04	0.023
5/16 3/8	0.3750	0.551	0.562	0.628	0.650	0.728	0.750	0.330	0.347	0.23	0.04	0.025
7/16	0.4375	0.675	0.688	0.768	0.794	0.910	0.937	0.375	0.395	0.26	0.04	0.032
1/2	0.5000	0.736	0.750	0.840	0.866	1.000	1.031	0.437	0.458	0.31	0.05	0.035
9/16	0.5625	0.861	0.875	0.982	1.010	1.155	1.188	0.483	0.506	0.35	0.05	0.040
5/8	0.6250	0.922	0.938	1.051	1.083	1.248	1.281	0.545	0.569	0.40	0.05	0.044
7/16 1/2 9/16 5/8 3/4	0.7500	1.088	1.125	1.240	1.299	1.460	1.500	0.627	0.675	0.46	0.06	0.051
					Larg	e Hex Fla	nge Nuts					
1/4	0.2500	0.428	0.438	0.488	0.505	0.700	0.728	0.281	0.312	0.15	0.04	0.024
5/16	0.3125	0.489	0.500	0.557	0.577	0.790	0.820	0.343	0.375	0.20	0.04	0.028
5/16 3/8	0.3750	0.551	0.562	0.628	0.650	0.885	0.915	0.390	0.406	0.24	0.04	0.031
7/16	0.4375	0.675	0.688	0.768	0.794	1.100	1.131	0.437	0.468	0.26	0.04	0.038
7/16 1/2	0.5000	0.736	0.750	0.840	0.866	1.175	1.205	0.485	0.515	0.29	0.06	0.041
9/16	0.5625	0.861	0.875	0.982	1.010	1.260	1.300	0.546	0.578	0.37	0.06	0.044
9/16 5/8	0.6250	0.922	0.938	1.051	1.083	1.280	1.360	0.600	0.640	0.42	0.06	0.045

GENERAL NOTES:

⁽a) For additional requirements refer to section 3, General Data.

⁽b) Concentricity of Tapped Hole. Axis of tapped hole shall be concentric with axis of nut body within a tolerance equal to 3% (6% FIM) of the maximum width across flats.

Table 13 Dimensions of Hex Coupling Nuts

Nominal	Basic Major Diameter of	Width	Across F	lats, F	Width /			Length, H	
Size	Thread	Basic	Min.	Max.	Min.	Max.	Basic	Min.	Max.
#6	0.138	5/16	0.302	0.312	0.344	0.361	1/2	0.470	0.51
#8	0.164	5/16	0.302	0.312	0.344	0.361	5/8	0.595	0.64
#10	0.190	5/16	0.302	0.312	0.344	0.361	3/4	0.711	0.76
1/4	0.250	7/16	0.428	0.438	0.488	0.505	13/4	1.690	1.76
5/16	0.312	1/2	0.489	0.500	0.557	0.577	13/4	1.690	1.76
3/8	0.375	9/16	0.551	0.562	0.628	0.650	$1\frac{3}{4}$	1.690	1.76
7/16	0.437	5/8	0.607	0.625	0.692	0.722	$1\frac{3}{4}$	1.690	1.76
1/2	0.500	11/16	0.663	0.688	0.756	0.794	13/4	1.690	1.70
9/16	0.562	13/16	0.782	0.813	0.891	0.939	21/8	2.067	2.1
5/8	0.625	13/16	0.782	0.813	0.891	0.939	$2^{1}/_{8}$	2.067	2.1
3/4	0.750	1	0.963	1.000	1.097	1.155	$2^{1}/_{4}$	2.190	2.2
³ / ₄ ⁷ / ₈	0.875	11/4	1.212	1.250	1.382	1.443	$2^{1}/_{2}$	2.440	2.5
1	1.000	$1\frac{3}{8}$	1.325	1.375	1.511	1.588	$2^{3}/_{4}$	2.690	2.7
11/8	1.125	$1\frac{1}{2}$	1.450	1.500	1.653	1.732	3	2.940	3.0
11/4	0.125	15/8	1.575	1.625	1.825	1.876	3	2.940	3.0
11/2	1.500	2	1.950	2.000	2.275	2.309	$3\frac{1}{2}$	3.440	3.5
15/8	1.625	$2\frac{9}{16}$	2.481	2.562	2.828	2.959	$4^{7}/_{8}$	4.830	4.9
13/4	1.750	$2^{3}/_{4}$	2.662	2.750	3.035	3.175	51/4	5.210	5.2
$1\frac{7}{8}$	1.875	$2^{15}/_{16}$	2.844	2.938	3.242	3.392	5 1/8	5.580	5.6
2	2.000	$3\frac{1}{8}$	3.025	3.125	3.448	3.608	6	5.950	6.0
21/4	2.250	$3\frac{1}{2}$	3.388	3.500	3.862	4.041	$6^{3}/_{4}$	6.700	6.8
$2^{1}/_{2}$	2.500	$3^{7}/_{8}$	3.750	3.875	4.275	4.474	$7^{1}/_{2}$	7.440	7.5
$2^{3}/_{4}$	2.750	41/4	4.112	4.250	4.688	4.907	81/4	8.190	8.3
3	3.000	45/8	4.475	4.625	5.101	5.340	9	8.940	9.0
31/4	3.250	5	4.838	5.000	5.515	5.773	93/4	9.680	9.8
$3\frac{1}{2}$	3.500	53/8	5.200	5.375	5.928	6.206	$10^{1}/_{2}$	10.430	10.5
$3^{3}/_{4}$	3.750	53/4	5.562	5.750	6.340	6.639	111/4	11.170	11.3
4	4.000	$6^{1}/_{8}$	5.925	6.125	6.754	7.072	12	11.920	12.0
41/4	4.250	$6^{1}/_{2}$	6.288	6.500	7.168	7.506	123/4	12.670	12.8
$4^{1}/_{2}$	4.500	$6^{7}/_{8}$	6.650	6.875	7.581	7.939	$13\frac{1}{2}$	13.420	13.5
43/4	4.750	71/4	7.012	7.250	7.994	8.372	$14\frac{1}{4}$	14.160	14.3
5	5.000	75/8	7.375	7.625	8.408	8.805	15	14.910	15.0
51/4	5.250	8	7.738	8.000	8.821	9.238	153/4	15.650	15.8
$5^{1}/_{2}$	5.500	83/8	8.100	8.375	9.234	9.671	$16^{1}/_{2}$	16.400	16.6
53/4	5.750	83/4	8.462	8.750	9.647	10.104	$17^{1}/_{4}$	17.150	17.3
6	6.000	$9^{1}/_{8}$	8.825	9.125	10.060	10.537	18	17.890	18.1

Table 13 Dimensions of Hex Coupling Nuts (Cont'd)

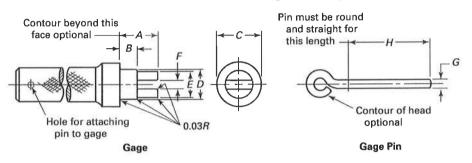
GENERAL NOTES:

- (a) For additional requirements, refer to section 3, General Data.
- (b) Concentricity of Tapped Hole. Axis of tapped hole shall be concentric with axis of nut body within a tolerance equal to 3% (6% FIM) of the maximum width across flats.
- (c) Countersink. Tapped hole may be countersunk on both faces.
- (d) When specified by the purchaser, different thread sizes or series shall be tapped into the nut from opposite ends with each thread extending to approximately 0.5H. All other nut dimensions shall comply with Table 13 unless otherwise agreed to by the supplier and purchaser.
- (e) The dimensions in Table 13 are considered standard, but purchasers may specify across flats sizes and/or lengths that differ from this table.
- (f) Hex coupling nuts must conform to the proof load requirements of ASTM A 563, Grade A for heavy hex nuts.

NOTE:

(1) Nuts shall be furnished without a hole, unless specially ordered by the purchaser. In some applications it may be desirable to assure that the threaded parts joined by a coupling nut are each engaged to approximately one-half nut thickness. As a visual inspection aid, a hole drilled through one side of the nut is recommended. The hole should be located at mid-nut thickness, and have a diameter of 0.2 to 0.4 times nominal nut size for sizes $2\frac{1}{2}$ in. and smaller, and 1 in. for sizes $2\frac{3}{4}$ in. and larger.

MANDATORY APPENDIX I SLOT GAGES AND GAGING FOR SLOTTED NUTS


The gages specified in Table I-1 shall be used to determine the acceptability of the alignment and bottom contours of the slots in slotted nuts in accordance with the following procedure.

The gaging for slot alignment provides for equal variations in the location of the cotter pinhole in the bolt and the location of the slots in the nut.

To inspect the nut, the slotted end of the gage shall be inserted through the threaded hole from the bearing surface of the nut. The gage pin shall then be inserted into both the gage slot and the nut slots through three adjacent faces of the nut, consecutively. Slot alignment shall be considered satisfactory if the gage pin fits into the slots without interference at all three gaging positions. The bottom contour shall be acceptable if the gage pin contacts the bottom surfaces of opposite slots during the alignment gaging at all three positions.

Some deviations from the specified gage plug diameters, *D*, may be necessary to compensate for variations in the nut thread minor diameter due to differences in manufacturing practices. To ensure adequate service life, gages and gage pins shall be suitably hardened.

Table I-1 Dimensions of Slot Gages and Gage Pins

0					Diame	Plug eter, D e (1)]	Gage	Gage	Gage Pin	
Nominal Size	Basic Major Diameter of Thread	Minimum Gage Pilot Length, A	Maximum Gage Plug Length, <i>B</i>	Minimum Gage Face Diameter, C	Coarse Thread +0.000 -0.001	Fine Thread +0.000 -0.001	Pilot Diameter, E ±0.005	Slot Width, F +0.002 -0.000	Diameter, <i>G</i> +0.000 -0.002	Minimum Gage Pin Length, H
1/4	0.2500	0.288	0.110	0.375	0.196	0.211	0.181	0.065	0.065	1.00
5/16	0.3125	0.316	0.150	0.406	0.252	0.267	0.237	0.085	0.085	1.06
5/16 3/8	0.3750	0.415	0.180	0.500	0.307	0.330	0.292	0.115	0.115	1.19
7/16	0.4375	0.463	0.200	0.562	0.360	0.383	0.345	0.115	0.115	1.25
1/2	0.5000	0.573	0.260	0.625	0.417	0.446	0.402	0.145	0.145	1.38
9/16	0.5625	0.621	0.280	0.703	0.472	0.502	0.457	0.145	0.145	1.44
9/16 5/8	0.6250	0.731	0.310	0.781	0.527	0.565	0.512	0.175	0.175	1.56
3/4	0.7500	0.827	0.370	0.938	0.642	0.682	0.627	0.175	0.175	1.75
7/8	0.8750	0.922	0.480	1.109	0.755	0.798	0.740	0.175	0.175	1.94
1	1.0000	1.018	0.550	1.250	0.865	0.910	0.850	0.235	0.235	2.12
11/8	1.1250	1.176	0.600	1.406	0.970	1.035	0.955	0.235	0.235	2.31
11/4	1.2500	1.272	0.660	1.562	1.095	1.160	1.080	0.305	0.305	2.50
13/8	1.3750	1.399	0.770	1.718	1.195	1.285	1.180	0.305	0.305	2.69
11/2	1.5000	1.526	0.810	1.875	1.320	1.410	1.305	0.365	0.365	2.88
13/4	1.7500	1.759	1.190	2.188	1.534		1.519	0.425	0.425	3.25
2	2.0000	2.013	1.370	2.500	1.759		1.744	0.425	0.425	3.62
21/4	2,2500	2.251	1.610	2.818	2.009		1.994	0.425	0.425	4.00
$2^{1}/_{2}$	2.5000	2.505	1.730	3.125	2.229	10100	2.214	0.545	0.545	4.38
23/4	2.7500	2.759	1.980	3.438	2.479		2,464	0.545	0.545	4.75
3	3.0000	3.013	2.160	3.750	2.729		2.714	0.615	0.615	5.12
31/4	3.2500	3.252	2.400	4.062	2.979		2.964	0.615	0.615	5.50
31/2	3.5000	3.506	2.640	4.375	3.229		3.214	0.615	0.615	5.88
33/4	3.7500	3.760	2.890	4.688	3.479		3.464	0.615	0.615	6.25
4	4.0000	4.014	3.140	5.000	3.729		3.714	0.615	0.615	6.62

NOTE:

⁽¹⁾ Diameters tabulated are equivalent to the minimum minor diameters of Class 2B threads. If the nuts are not threaded with unified coarse (UNC) or fine (UNF) threads, the diameter of gage shall be the same as the diameter of the GO thread plug gage for the bore.

NONMANDATORY APPENDIX A FORMULAS FOR NUT DIMENSIONS

Table A-1 specifies formulas for various nut dimensions.

Table A-1 Formulas for Nut Dimensions

		Width Acro	ss Flats	Nut Th	ickness	Width Acre	oss Corners
		Basic	Tolerance	Basic	Tolerance	Limi	ts, G
Nut Type	Nut Size	[Note (1)]	(Minus)	[Note (2)]	(Plus or Minus)	Min.	Max.
Square	1/4 to 5/8	F = 1.500D + 0.062	0.050 <i>D</i>	H = 0.875D	0.016D + 0.012	1.373 × (Min. F) -0.030	1.4142 × (Max.F)
	3/4 to 11/2	F = 1.500D	0.050 D	H = 0.875D	0.016 <i>D</i> + 0.012	1.373 × (Min. F) -0.030	1.4142 × (Max.F)
Hex Flat	$1\frac{1}{8}$ to $1\frac{1}{2}$	F = 1.500D	0.050 <i>D</i>	H = 0.875D	0.016 <i>D</i> + 0.012	1.14 × (Min. F)	1.1547 × (Max.F)
Hex Flat Jam	11/8	F = 1.500D	0.050 <i>D</i>	H = 0.500D + 0.062	0.016 <i>D</i> + 0.012	1.14 × (Min. F)	1.1547 × (Max.F)
	11/4 to 11/2	F = 1.500D	0.050 D	H = 0.500D + 0.125	0.016 <i>D</i> + 0.012	1.14 × (Min. F)	1.1547 × (Max.F)
Hex and Hex Slotted	1/4	F = 1.500D + 0.062	0.015 <i>D</i> + 0.006	H = 0.875D	0.015 <i>D</i> + 0.003	1.14 × (Min. F)	1.1547 × (Max.F)
	5/ ₁₆ to 5/ ₈	F = 1.500D	0.015 <i>D</i> + 0.006	H=0.875D	0.015 <i>D</i> + 0.003	1.14 × (Min. F)	1.1547 × (Max.F)
	$\frac{3}{4}$ to $1\frac{1}{8}$	F = 1.500D	0.050 D	H = 0.875D - 0.016	0.016 <i>D</i> + 0.012	1.14 × (Min. F)	1.1547 × (Max.F)
	11/4 to 11/2	F = 1.500D	0.050 D	H = 0.875D - 0.031	0.016 <i>D</i> + 0.012	1.14 × (Min. F)	1.1547 × (Max.F)
Hex Jam	1/4	F = 1.500D + 0.062	0.015 <i>D</i> + 0.006	H = See Table	0.015 <i>D</i> + 0.003	1.14 × (Min. F)	1.1547 × (Max.F)
	5/ ₁₆ to 5/ ₈	F = 1.500D	0.015D + 0.006	H = See Table	0.015 <i>D</i> + 0.003	1.14 × (Min. F)	1.1547 × (Max.F)
	$\frac{3}{4}$ to $1\frac{1}{8}$	F = 1.500D	0.050D	H = 0.500D + 0.047	0.016 <i>D</i> + 0.012	1.14 × (Min. F)	1.1547 × (Max.F)
	11/4 to 11/2	F = 1.500D	0.050 <i>D</i>	H = 0.500D + 0.094	0.016 <i>D</i> + 0.012	1.14 × (Min. F)	1.1547 × (Max.F)
Hex Thick, and Hex Thick Slotted	1/4	F = 1.500D + 0.062	0.015 <i>D</i> + 0.006	H = See Table	0.015 <i>D</i> + 0.003	1.14 × (Min. F)	1.1547 × (Max.F)
Title Stotled	5⁄ ₁₆ to 5⁄ ₈	F = 1.500D	0.015 <i>D</i> + 0.006	H = See Table	0.015 <i>D</i> + 0.003	1.14 × (Min. F)	1.1547 × (Max.F)
	3/4 to 11/2	F = 1.500D	0.050 <i>D</i>	H = See Table	0.015 <i>D</i> + 0.003	1.14 × (Min. F)	1.1547 × (Max.F)
Heavy Square	1/4 to 11/2	F = 1.500D + 0.125	0.050 <i>D</i>	H = 1.000D	0.016 <i>D</i> + 0.012 [Note (3)]	1.373 × (Min. F) - 0.030	1.4142 × (Max.F)
Heavy Hex Flat	1½ to 4	F = 1.500D + 0.125	0.050 <i>D</i>	H = 1.000D	0.016 <i>D</i> + 0.012 [Note (3)]	1.14 × (Min. F)	1.1547 × (Max.F)
Heavy Hex Flat Jam	$\frac{1}{4}$ to $1\frac{1}{8}$	F = 1.500D + 0.125	0.050 <i>D</i>	H = 0.500D + 0.062	0.016 <i>D</i> + 0.012	1.14 × (Min. F)	1.1547 × (Max.F)
	11/4 to 21/4	F = 1.500D + 0.125	0.050 <i>D</i>	H = 0.500D + 0.125	[Note (4)] 0.016D + 0.012 [Note (4)]	1.14 × (Min. F)	1.1547 × (Max.F)
	2½ to 4	F = 1.500D + 0.125	0.050 <i>D</i>	H = 0.500D + 0.250	0.016 <i>D</i> + 0.012 [Note (4)]	1.14 × (Min. F)	1.1547 × (Max.F)

Table A-1 Formulas for Nut Dimensions (Cont'd)

		Width Acr	nce Flate	Nut T	hickness	Width Across Corners			
		Basic	Tolerance	Basic	Tolerance	Limits, G			
Nut Type	Nut Size	[Note (1)]	(Minus)	[Note (2)]	(Plus or Minus)	Min.	Max.		
Heavy Hex and	1/4 to 11/8	F = 1.500D	0.050 <i>D</i>	H = 1.000D	0.016D +	1.14 × (Min. F)	1.1547 × (Max.F)		
Heavy Hex Slotted		+ 0.125		- 0.016	0.012				
	11/4 to 2	F = 1.500D	0.050D	H = 1.000D	0.016D +	$1.14 \times (Min. F)$	$1.1547 \times (Max.F)$		
		+ 0.125		- 0.031	0.012				
	$2\frac{1}{4}$ to 3	F = 1.500D	0.050D	H = 1.000D	0.016D +	$1.14 \times (Min. F)$	$1.1547 \times (Max.F)$		
		+ 0.125		- 0.047	0.012				
	$3\frac{1}{4}$ to 4	F = 1.500D	0.050 <i>D</i>	H = 1.000D	0.016D +	$1.14 \times (Min. F)$	$1.1547 \times (Max.F)$		
		+ 0.125		- 0.062	0.012				
Heavy Hex Jam	1/4 to 11/8	F = 1.500D + 0.125	0.050 <i>D</i>	H = 0.500D + 0.047	0.016 <i>D</i> + 0.012	1.14 × (Min. F)	1.1547 × (Max.F)		
	11/4 to 2	F = 1.500D	0.050 <i>D</i>	H = 0.500D	0.016D +	1.14 × (Min. F)	1.1547 × (Max.F)		
	1/4 to 2	+ 0.125	0.0300	+ 0.094	0.012	112 1 / (((()))			
	21/4	F = 1.500D	0.050 <i>D</i>	H = 0.500D	0.016D +	$1.14 \times (Min. F)$	$1.1547 \times (Max.F)$		
	2/4	+ 0.125	0.0500	+ 0.078	0.012	,			
	2½ to 3	F = 1.500D	0.050D	H = 0.500D	0.016D +	$1.14 \times (Min. F)$	$1.1547 \times (Max.F)$		
	-/2 .0 3	+ 0.125		+ 0.203	0.012	,			
	$3\frac{1}{4}$ to 4	F = 1.500D	0.050D	H = 0.500D	0.016D +	$1.14 \times (Min. F)$	$1.1547 \times (Max.F)$		
	- /4	+ 0.125		+ 0.188	0.012	, ,			

NOTES

⁽¹⁾ Adjusted to sixteenths.

⁽²⁾ $\frac{1}{4}$ in. to 1 in. sizes adjusted to sixty-fourths. $\frac{1}{8}$ in. to $\frac{2}{2}$ in. sizes adjusted upward to thirty-seconds. $\frac{2}{4}$ in. to 4 in. sizes adjusted upward to sixteenths.

 $[\]dot{}$ (3) Plus tolerance only. Minus tolerance adjusted so that minimum thickness is equal to minimum thickness of heavy hex nut.

⁽⁴⁾ Plus tolerance only. Minus tolerance adjusted so that minimum thickness is equal to minimum thickness of heavy hex jam nut. where

D = nominal nut size or basic diameter of the thread

F =width across flats

G = width across corners

NONMANDATORY APPENDIX B WRENCH OPENINGS FOR SQUARE AND HEX NUTS

Table B-1 specifies wrench openings for square and hex nuts.

Table B-1 Wrench Openings for Square and Hex Nuts

		Allowance Between						Nominal Nut Sizes	
Basic Size of	Maximum Nut Across	Nut Flats and Wrench	Wr	ench Openii	ngs	Machine		Hex Flat, Hex Flat Jam, Hex, Hex Jam, Hex Slotted, Hex Thick, Hex	Heavy Square, Heavy Hex Flat, Heavy Hex Fla
Wrench, W	Flats [Note (1)]	Jaws [Note (2)]	Min.	Tolerance [Note (2)]	Max.	Screw Nuts	Square Nuts	Thick Slotted, Heavy Hex Slotted	Jam, Heavy Hex, Heavy Hex Jam
5/32	0.156	0.002	0.158	0.005	0.163	#0, #1			***
3/16	0.188	0.002	0.190	0.005	0.195	#2, #3		(****	3 to 40 to 5
1/4	0.250	0.002	0.252	0.005	0.257	#4			***
5/16	0.312	0.003	0.315	0.006	0.321	#5, #6			
11/32	0.344	0.003	0.347	0.006	0.353	#8			• • •
11/ ₃₂ 3/ ₈	0.375	0.003	0.378	0.006	0.384	#10			
7/16	0.438	0.003	0.440	0.006	0.446	#12, ½	1/4	1/4	
1/2	0.500	0.004	0.504	0.006	0.510			5/16	1/4
9/16	0.562	0.004	0.566	0.007	0.573	5/16	5/16	3/8	5/16
5/8	0.625	0.004	0.629	0.007	0.636	3/8	3/8		• • •
11/16	0.688	0.004	0.692	0.007	0.699			7/16	3/8
3/4	0.750	0.005	0.755	0.008	0.763		7/16	1/2	7/16
13/				0.008	0.826		1/2		716
13/ ₁₆ 7/ ₈	0.813	0.005	0.818	0.008	0.888	501.50		%16	1/2
15/	0.875	0.005	0.880					5/8	9/16
15/16	0.938	0.006	0.944	0.009	0.953		5/8		
1	1.000	0.006	1.006	0.009	1.015			* * *	5/8
$1\frac{1}{16}$	1.063	0.006	1.068	0.009	1.077	• • • •	3/4	3/4	
11/8	1.125	0.007	1.132	0.010	1.142				3/4
11/4	1.250	0.007	1.257	0.010	1.267		7,	7,	
$1^{5}/_{16}$	1.313	0.008	1.320	0.011	1.331	5.565	7/8	7/8	··· 7/8
17/16	1.438	0.008	1.446	0.011	1.457		1	1	/8
$1\frac{1}{2}$	1.500	0.008	1.508	0.012	1.520	• • •	1	1	
15/B	1.625	0.009	1.634	0.012	1.646		• • • •		1
111/16	1.688	0.009	1.696	0.012	1.708		11/8	$1\frac{1}{8}$:::
$1^{13}/_{16}$	1.813	0.010	1.822	0.013	1.835			*4:	11/8
1 1/8	1.875	0.010	1.885	0.013	1.898		11/4	11/4	
2	2.000	0.011	2.011	0.014	2.025			141	11/4
$2^{1}/_{16}$	2.063	0.011	2.074	0.014	2.088		13/8	13/8	* * *
$2^{3}/_{16}$	2.188	0.012	2.200	0.015	2.215			• ; •	13/8
21/4	2.250	0.012	2.262	0.015	2.277		11/2	11/2	-11
$2^{3}/_{8}$	2.375	0.013	2.388	0.016	2.404				11/2
29/16	2.563	0.014	2.576	0.017	2.593	* * *		***	15/8
23/4	2.750	0.014	2.766	0.017	2.783			***	13/4
$2^{15}/_{16}$	2.938	0.016	2.954	0.019	2.973				17/8
31/8	3.125	0.017	3.142	0.020	3.162			***	2
$3\frac{1}{2}$	3.500	0.017	3.518	0.022	3.540			***	21/4
$3^{7/2}$	3.875	0.020	3.895	0.023	3.918				$2^{1/2}$
41/4	4.250	0.022	4.272	0.025	4.297		***	30.00	$2^{3}/_{4}$
4 /4 4 ⁵ / ₈	4.625	0.022	4.649	0.027	4.676			(2.3%) 2424/4	3
4 /8 5	5.000	0.024	5.026	0.027	5.055				31/4
5 ³ / ₈	5.375	0.028	5.403	0.023	5.434			***	31/2
5 ³ / ₄	5.750	0.028	5.780	0.031	5.813			***	33/4
7 /4	J./ JU	0.030	J./ OU	0.033	ノ・ひェン				4

NOTES

⁽¹⁾ Wrenches are normally marked with "Basic Wrench Size," which corresponds to the basic (maximum, in most cases) width across flats dimension of the respective nut. For specific requirements applicable to wrenches, refer to the appropriate ASME B107 standard, which covers the particular wrench type.

⁽²⁾ Allowance (minimum clearance) between maximum width across flats of the nut and jaws of wrench equals (0.005W + 0.001). Tolerance on wrench opening equals plus (0.005W + 0.004) from minimum, where W = nominal size of wrench.

INTENTIONALLY LEFT BLANK

B18 AMERICAN NATIONAL STANDARDS FOR BOLTS, NUTS, RIVETS, SCREWS, WASHERS, AND SIMILAR FASTENERS

Small Solid Rivets	B18.1.1-1972 (R2006)
Large Rivets	B18.1.2-1972 (R2006)
Metric Small Solid Rivets	B18 1 3M-1983 (R2006)
Square, Hex, Heavy Hex, and Askew Head Bolts and Hex, Heavy Hex, Hex Flange,	1510:1:5/11 1505 (12000)
Lobed Head, and Lag Screws (Inch Series)	R18 2 1-2010
	616.2.1-2010
Nuts for General Applications: Machine Screw Nuts, Hex, Square, Hex Flange, and Coupling Nuts (Inch Series).	P18 2 2 2010
and Coupling Nuts (Inch Series)	140 2 2 444 4000 (D2005)
Metric Hex Cap Screws	18.2.3.1W-1999 (R2005)
Metric Formed Hex Screws	B18.2.3.2W-2005
Metric Heavy Hex Screws	318.2.3.3W-1979 (R2001)
Metric Hex Flange Screws	318.2.3.4M-2001 (R2006)
Metric Hex Bolts	
Metric Heavy Hex Bolts	318.2.3.6M-1979 (R2006)
Metric Heavy Hex Structural Bolts	318.2.3.7M-1979 (R2006)
Metric Heavy Hex Flange Screws	318.2.3.9M-2001 (R2006)
Metric Hex Nuts, Style 1	318.2.4.1M-2002 (R2007)
Metric Hex Nuts. Style 2	B18.2.4.2M-2005
Metric Slotted Hex Nuts	318.2.4.3M-1979 (R2006)
Metric Hex Flange Nuts	318.2.4.4M-1982 (R2005)
Metric Hex lam Nuts	B18.2.4.5M-2008
Metric Heavy Hex Nuts	B18.2.4.6M-2010
Metric Flanged 12-Point Head Screws	B18.2.5M-2009
Fasteners for Use in Structural Applications	B18.2.6-2010
Metric 12-Spline Flange Screws	318.2.7.1M-2002 (R2007)
Clearance Holes for Bolt, Screws, and Studs.	B18.2.8-1999 (R2010)
Straightness Gage and Gaging for Bolts and Screws	B18.2.9-2010
Socket Cap, Shoulder, and Set Screws, Hex and Spline Keys (Inch Series)	R18 3-2003 (R2008)
Socket Cap, Shoulder, and Set Screws, nex and Spline Keys (filtin Series)	R18 3 1M-1086 (R2008)
Metric Series Hexagon Keys and Bits	B18 3 2M-1070 (R2000)
Metric Series Hexagon Keys and Bits.	D10.3.2M-1979 (R2006)
Hexagon Socket Head Shoulder Screws (Metric Series)	.B16.3.3W-1966 (R2006)
Hexagon Socket Button Head Cap Screws (Metric Series)	.B18.3.4W-1986 (R2008)
Hexagon Socket Flat Countersunk Head Cap Screws (Metric Series)	.B18.3.5M-1986 (R2008)
Metric Series Socket Set Screws	.B18.3.6M-1986 (R2008)
Round Head Bolts (Inch Series)	B18.5-1990 (R2003)
Metric Round Head Short Square Neck Bolts	B18.5.2.1M-2006
Metric Round Head Square Neck Bolts	318.5.2.2M-1982 (R2005)
Wood Screws (Inch Series)	B18.6.1-1981 (R2008)
Slotted Head Cap Screws, Square Head Set Screws, and Slotted Headless Set Screws (Inch Series)	B18.6.2-1998 (R2010)
Machine Screws and Machine Screw Nuts	B18.6.3-2003 (R2008)
Thread Forming and Thread Cutting Tapping Screws and Metallic Drive Screws (Inch Series)	B18.6.4-1998
Metric Thread-Forming and Thread-Cutting Tapping Screws	.B18.6.5M-2000 (R2010)
Metric Machine Screws	.B18.6.7M-1999 (R2010)
Wing Nuts (Inch Series).	B18.6.9-2010
General Purpose Semi-Tubular Rivets, Full Tubular Rivets, Split Rivets and Rivet Caps	B18.7-2007
Metric General Purpose Semi-Tubular Rivets	B18.7.1M-2007
Clevis Pins and Cotter Pins (Inch Series)	B18.8.1-1994 (R2000)
Taper Pins, Dowel Pins, Straight Pins, Grooved Pins, and Spring Pins (Inch Series)	
	B18.8.2-2000
laper Mins, Dowel Mins, Straight Mins, drouved Mins, and Spring Prins (intel Series)	B18.8.2-2000
Spring Pins: Coiled Type, Spring Pins: Slotted, Machine Dowel Pins: Hardened Ground.	B18.8.2-2000
Spring Pins: Coiled Type, Spring Pins: Slotted, Machine Dowel Pins: Hardened Ground, and Grooved Pins (Metric Series)	B18.8.2-2000 B18.8.100M-2000 (R2005)
Spring Pins: Coiled Type, Spring Pins: Slotted, Machine Dowel Pins: Hardened Ground, and Grooved Pins (Metric Series)	B18.8.2-2000 B18.8.100M-2000 (R2005) B18.8.200M-2000 (R2005)
Spring Pins: Coiled Type, Spring Pins: Slotted, Machine Dowel Pins: Hardened Ground, and Grooved Pins (Metric Series)	B18.8.2-2000 B18.8.100M-2000 (R2005) B18.8.200M-2000 (R2005) B18.9-2007
Spring Pins: Coiled Type, Spring Pins: Slotted, Machine Dowel Pins: Hardened Ground, and Grooved Pins (Metric Series)	B18.8.2-2000 B18.8.100M-2000 (R2005) B18.8.200M-2000 (R2005) B18.9-2007 B18.10-1982 (R2005)
Spring Pins: Coiled Type, Spring Pins: Slotted, Machine Dowel Pins: Hardened Ground, and Grooved Pins (Metric Series). Cotter Pins, Headless Clevis Pins, and Headed Clevis Pins (Metric Series). Flow Bolts. Track Bolts and Nuts. Miniature Screws	B18.8.2-2000 B18.8.100M-2000 (R2005) B18.8.200M-2000 (R2005) B18.9-2007 B18.10-1982 (R2005)
Spring Pins: Coiled Type, Spring Pins: Slotted, Machine Dowel Pins: Hardened Ground, and Grooved Pins (Metric Series). Cotter Pins, Headless Clevis Pins, and Headed Clevis Pins (Metric Series). Flow Bolts Track Bolts and Nuts. Miniature Screws. Glossary of Terms for Mechanical Easteners	B18.8.2-2000 B18.8.100M-2000 (R2005) B18.8.200M-2000 (R2005) B18.9-2007 B18.10-1982 (R2005) B18.11-1961 (R2005) B18.12-2001 (R2006)
Spring Pins: Coiled Type, Spring Pins: Slotted, Machine Dowel Pins: Hardened Ground, and Grooved Pins (Metric Series). Cotter Pins, Headless Clevis Pins, and Headed Clevis Pins (Metric Series). Flow Bolts. Track Bolts and Nuts. Miniature Screws	B18.8.2-2000 B18.8.100M-2000 (R2005) B18.8.200M-2000 (R2005) B18.9-2007 B18.10-1982 (R2005) B18.11-1961 (R2005) B18.12-2001 (R2006) B18.13-1996 (R2008)

Forged Eyebolts	B18.15-1985 (R2008)
Prevailing-Torque Type Steel Metric Hex Nuts and Hex Flange Nuts	B18.16M-2004 (R2009)
Serrated Hex Flange Locknuts 90,000 psi (Inch Series)	B18.16.4-2008
Nylon Insert Locknuts (Inch Series)	B18.16.6-2008
Inspection and Quality Assurance for General Purpose Fasteners	B18.18.1-2007
Inspection and Quality Assurance for High-Volume Machine Assembly Fasteners	B18.18.2-2009
Inspection and Quality Assurance for Special Purpose Fasteners	B18.18.3M-1987 (R2005)
Inspection and Quality Assurance for Fasteners for Highly Specialized Engineered Applications	B18.18.4M-1987 (R2005)
Inspection and Quality Assurance Plan Requiring In-Process Inspection and Controls	B18.18.5M-1998 (R2009)
Quality Assurance Plan for Fasteners Produced in a Third Party Accreditation System	B18.18.6M-1998 (R2009)
Quality Assurance Plan for Fasteners Produced in a Customer Approved Control Plan	B18.18.7M-1998 (R2009)
Washers: Helical Spring-Lock, Tooth Lock, and Plain Washers (Inch Series)	B18.21.1-2009
Lock Washers (Metric Series)	B18.21.2M-1999 (R2005)
Double Coil Helical Spring Lock Washers for Wood Structures	B18.21.3-2008
Metric Plain Washers.	B18.22M-1981 (R2010)
Part Identifying Number (PIN) Code System for B18 Fastener Products	
Square and Rectangular Keys and Keyways	B18.25.1M-1996 (R2008)
Woodruff Keys and Keyways	B18.25.2M-1996 (R2008)
Square and Rectangular Keys and Keyways: Width Tolerances and	
Deviations Greater Than Basic Size	B18.25.3M-1998 (R2008)
Tapered and Reduced Cross Section Retaining Rings (Inch Series)	B18.27-1998 (R2005)
Helical Coil Screw Thread Inserts — Free Running and Screw Locking (Inch Series)	
Helical Coil Screw Thread Inserts: Free Running and Screw Locking (Metric Series)	B18.29.2M-2005
Open-End Blind Rivets With Break Mandrels (Metric Series)	B18.30.1M-2000 (R2005)
Metric Continuous and Double-End Studs	B18.31.1M-2008
Continuous and Double-End Studs	B18.31.2-2008
Threaded Rods (Inch Series)	B18.31.3-2009
Threaded Rod (Metric Series)	B18.31.4M-2009

The ASME Publications Catalog shows a complete list of all the Standards published by the Society. For a complimentary catalog, or the latest information about our publications, call 1-800-THE-ASME (1-800-843-2763).

INTENTIONALLY LEFT BLANK

M04310